A ROAD MAP FOR THE FURTHER DEPLOYMENT OF THE HYDROGEN ECONOMY

MARK NELLER
DIRECTOR ARUP
Delivering the Hydrogen Economy North West:

A Road Map for the Further Deployment of the Hydrogen Economy

Mark Neller
Energy Advisory Director

May 2019
Conclusion

…..the figures quoted above suggest that the hydrogen route might well be cheaper than the electricity route…..

….. could only be delivered on the basis of a major strategic decision by the Government and a clear vision of the future low-carbon energy system

……..require a very clear and determined government strategy; it is likely that it would only make sense if there was an overall vision of a hydrogen- based energy economy….
The hydrogen economy
The Workshops Activities

Activities hosted throughout the sessions included:
- Challenges, barriers, risks and opportunity mapping
- Sub-group business models (production, transportation and retail)
- Business plans (Dragons Den style pitch)
- Group Road-mapping
- Briefing note to Claire Perry, responsible politician
- Conclusion sharing and cross-collaboration
Key Themes

- Incremental build up of demand and supply
- Public transport and return to base fleets as stage one
- Blending and industrial decarbonisation via establishment of regional hubs
- Hydrogen production from constrained renewables and methane reformation with CCS
- Gather evidence to support case for 100% conversion
- Reduce dependence on single big government decision
- Build consumer acceptance
- Develop regulatory and market models with large elements of competition and equitable socialisation costs
- Use next 5 years to implement demonstration and real projects.
Next steps

- Pilots & scale demos
- Public understanding
- Coordinated research
- Learn from overseas
- Policy and market design
- Jobs and employment

Learn from overseas

Policy and market design

Coordinated research

Public understanding

Jobs and employment

Pilots & scale demos

Next steps
Committee for Climate Change: Net Zero report

Development of a hydrogen economy to service demands for some industrial processes, for energy-dense applications in long-distance HGVs and ships, and for electricity and heating in peak periods. By 2050, a new low-carbon industry is needed with UK hydrogen production capacity of comparable size to the UK’s current fleet of gas-fired power stations.

Delivery must progress with far greater urgency. Many current plans are insufficiently ambitious; others are proceeding too slowly, even for the current 80% target:

• Over ten years after the Climate Change Act was passed, there is still no serious plan for decarbonising UK heating systems and no large-scale trials have begun for either heat pumps or hydrogen.
Figure 2. UK net-zero GHG scenario

<table>
<thead>
<tr>
<th>Category</th>
<th>2020s</th>
<th>2030s</th>
<th>2040s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICITY</td>
<td>Largely decarbonise electricity; renewables, flexibility, coal phase-out</td>
<td>Expand electricity system, decarbonise mid-morning/peak generation (e.g. using hydrogen), deploy bioenergy with CCS</td>
<td></td>
</tr>
<tr>
<td>HYDROGEN</td>
<td>Start large-scale hydrogen production with CCS</td>
<td>Widespread deployment in industry, use in back-up electricity generation, heavier vehicles (e.g. HGVs, trains) potentially switch to hydrogen</td>
<td></td>
</tr>
<tr>
<td>BUILDINGS</td>
<td>Efficiency, heat networks, heat pumps (new-build, off-gas, hybrids)</td>
<td>Widespread electrification, expand heat networks, gas grids potentially</td>
<td></td>
</tr>
<tr>
<td>ROAD TRANSPORT</td>
<td>Ramp up EV market, decisions on HGVs</td>
<td>Turn over fleets to zero-emission vehicles: cars & vans before HGVs</td>
<td></td>
</tr>
<tr>
<td>INDUSTRY</td>
<td>Initial CCS clusters, energy & resource efficiency</td>
<td>Further CCS, widespread use of hydrogen, some electrification</td>
<td></td>
</tr>
<tr>
<td>AGRICULTURE</td>
<td></td>
<td></td>
<td>Healthy diets, reduced food waste, tree growing and low-carbon farming practices</td>
</tr>
<tr>
<td>AVIATION</td>
<td></td>
<td>Operational measures, new plane efficiency, constrained demand growth, limited sustainable biofuels</td>
<td></td>
</tr>
<tr>
<td>SHIPPING</td>
<td></td>
<td>Operational measures, new ship fuel efficiency, use of ammonia</td>
<td></td>
</tr>
<tr>
<td>WASTE</td>
<td>Reduce waste, increase recycling rates, landfill ban for biodegradable waste</td>
<td>Limit emissions from combustion of non-bio-wastes (e.g. Deploy measures to reduce emissions from waste water)</td>
<td></td>
</tr>
<tr>
<td>F-GASES</td>
<td></td>
<td>Move almost completely away from F-gases</td>
<td></td>
</tr>
<tr>
<td>GREENHOUSE GAS REMOVALS</td>
<td>Develop options & policy framework</td>
<td>Deployment of BECCS in various forms, demonstrate direct air capture of CO₂, other removals depending on progress</td>
<td></td>
</tr>
<tr>
<td>INFRASTRUCTURE</td>
<td>Industrial CCS clusters, decisions on gas grid & HGV infrastructure, expand vehicle charging & electricity grids</td>
<td>Hydrogen supply for industry & potentially buildings, roll-out of infrastructure for hydrogen and electricity grids, more CCS infrastructure, electricity network expansion</td>
<td></td>
</tr>
<tr>
<td>CO-BENEFITS</td>
<td></td>
<td></td>
<td>Health benefits due to improved air quality, healthier diets and more walking & cycling Clean growth and industrial opportunities</td>
</tr>
</tbody>
</table>